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1. Introduction

Considered is a capital budgeting problem with linear decision
variables that can be either continuous or integer and where some or all
of the associated cash flows are random variables that may be statisti-
cally dependent.

It is formulated as a problem of linear programming under risk

for which mainly three approaches, stochastic programming, linear pro-

gramming under uncertainty and chance-constrained programming, have been

1)

developed.
Stochastic linear programming, an approach originally suggested

by Tintner [32] is primarily concerned with the probability distribution

of the objective function's value.z)

Linear programming under uncertainty or, as it is sometimes termed,

stochastic programming with recourse, was suggested independently by

Beale [ 4] and Dantzig [10]. The basic innovation of this approach is to
amend the problem to allow the decision maker the opportunity to make

corrective actions after the random variables are observed and/or pay

penalties for constraint violatioms.
Charnes, Cooper and Symonds [ 8] have presented a third approach

3)

called chance-constrained programming in which each constraint must be
satisfied with a certain tolerance probability, i.e.,the fulfillment of
the constraints is not required to be guaranteed as in linear programming
under uncertainty.

For the formulation of objectives in chance-constrained program-

ming approaches different criteria have been discussed, the principal ones

outlined in Charnes and Cooper [ 7].




In this paper, the capital budgeting problem is considered to be
adequately represented by a chance-constrained programming model with an
objective function that includes the expected value and standard deviation
of a firm's horizon value.

The application of chance-constrained programming to capital bud-

geting problems has been discussed before. See for example Arzac [ 1],

Byrne, Charnes, Cooper and Kortanek [ 3], Byrne, Cooper, Charnes, Davis

and Guilford [ 5], Hillier [15], Naslund [24,25], Naslund and Whinston [27],
Robertson [28], Struve [31] or Spetzler [30].
The main purpose of this paper is to show that a stochastic capital

i budgeting problem with continuous and/or integer decision variables can be

formulated as a convex chance-constrained programming problem that can be

-

approximated by an ordinary (integer or noninteger) linear programming
| problem.

Furthermore, we will show that the proposed procedure allows the

At A B A e i

determination of an optimal cash reserve and, in addition, the considera-

tion of decision opportunities that deal with an unexpected surplus or

tr s evsls

deficit in periodic capital budgets as well as of penalties involved if the

probability constraints do happen to be violated.

2. A stochastic capital budgeting problem

2.1 Basic formulation

Let us consider a capital budgeting problem in which we assume that

a firm chooses those physical and financial projects which maximize its

horizon value subject to physical and financial constraints in distinguished

4)

periods. Furthermore, it is assumed that (a) interdependences between

i il ; . ' usa “ et s o, M




projects and (b) the capital market conditions can be expressed in an
(integer or noninteger) linear programming formats) such that the capital

budgeting problem can be formulated mathematically as:

T
maximize z = I e Xy (1a)
¢ i=1
subject to Lg% = D, (t=1,..,T) (1b)
i=1
x; € X (i=1,..,T) (1c)
0 L= <1 (i=1,..,T) (1d)

where

x, = vector of decision variables, each representing the fraction of a
project (physical capital projects as well as borrowing and lending

opportunities) started in period i,

(> = vector representing the horizon value of post horizon cash flows

associated with one unit of Xys
= vector representing the net cash flow in period t associated with
one unit of Xgs
D, = the total amount of net cash flows in period t associated with pro-
jects realized prior to the start of the planning process,
and where the constraints xiex (i=1,..,T) can be expressed in an (integer
or noninteger) linear programming format.6)
The elements of the vectors ¢y (i=1,..,T) and ey (t=1,..,T;i=1l,..,t)
and the Dt (t=1,..,T) are assumed to be either constants or random variables
that might be statistically dependent. If some elements of the ¢y or even

some elements of the 8.4 OF some of the Dt are random variables, the hori-

zon value z is also a random variable. The same is true for n, (t=1,..,T),




the net cash flow in period t, defined by
t

n = I 8%y + Dt (t=1,..,T) (2)
i=1

if some elements of the 8.4 OF some of the Dt are random variables.

In this case, the problem formulation (1) must be regarded as an
incomplete formulation of the decision situation as it does not reflect
the decision maker's attitude towards the probability distributions of the
horizon value and the periodic net cash flows. It may be completed by spe-

cifying rules that allow the determination of solutions for the decision

problem which accord with the decision maker's preferences.

2.2 Decision rules

We consider here only rules for decision situations where we assume
that the decision variables must be assigned values while the values the
random variables will take on are still unknown (zero-order decision rules).
For capital budgeting problems attempts to allow for the probability distri-
bution of random variables have been concentrated on
a) imposing probability constraints on periodic net cash flows while maxi-

mizing the expected value of the random objective variable (see Hillier

[15] or Naslund [25]) or
b) introducing an objective function which includes not only the expected
value of the random objective variable but a measure for the dispersion
of its probability distribution.7)
Both approaches have been extensively discussed by their authors
with regard to the maximization of a decision maker's utility function.

As for the choice of an appropriate dispersion measure in the second

approach, comparative discussions and model calculations have been mainly




concentrated on the variance, semi-variance and standard deviation of
the objective variable's probability distribution (see Markowitz [21],
Bey [ 2], Hamada [13], Mao [22,23], Robertson [28] or Van Horne [33,34]).
In this paper we combine both approaches as we assume a decision
maker that allows for the probability distribution of the random periodic
net cash flows n, (t=1,..,T) and the random horizon value z in the sto-
chastic capital budgeting problem (1) by preferring decisions which are
obtained according to the following rules:
1) In each period t (t=1,..,T) the equality constraint (1b) should hold
for the expected value E(nt) of the periodic net cash flow while the
probability that a periodic deficit exceeds a specified amount bt

should be lower than a specified risk level (l-at), i.e.

E(nt) =0
3)
Prob {n > -b } 5.1
2) A possible realization z' of the horizon value z, defined by 1
z' = E(z) - 8 /Y V(z) with B>0 (4)

with the expected value E(z) and the standard deviation v V(z) of the

probability distribution of z, should be as high as possible. For a
discussion and determination of B in a probability context seesfor
example,Hillier and Lieberman [16].

While the second rule focuses on the standard deviation of the
horizon value's probability distribution as a dispersion measure to be
used in the objective function of the programming model, it is easy to
show that other measures like the variance or semi-variance of the distri-

bution (as preferred by Markowitz [21]) can be used within the frame-

work of the proposed procedure as well.




2.3 A complete formulation

By introducing the decision rules into the programming formula-
tion (1) of the stochastic capital budgeting problem, it can be formu-

lated as a chance-constrained programming problem:

T i g
| Ry -
maximize z' = E( I cixi) gV V(2 cixi) (5a)

i=1 i=1
|
subject to E( £ 8.1%y) = E(—Dt) (5b)
i=1
t
Prob {(1§1gtixi+bt) > -bt} >a, (t=1,..,T) (5c)
X, € X (i=1,..,T) (5d)
0 Z_Xi >1 (i=1,..,T) (5e)

The first step in solving this problem is to reduce it to a deter-
ministic equivalent form, i.e.,to determine deterministic equivalent forms

of the probability constraints.

3. A deterministic equivalent form

Denote by s: a "situation" k in period t, representing a possible

simultaneous realizaticn [g?t,..,g¥t,D:] of the random elements of 8i¢ for

i=1,..,T and Dt and by sk a situation representing a simultaneous

T+1
realization [ck,..,c¥] of the random elements of e (t=1l,..,T). Let St be

e —

the set of all possible situations in a period t (t=1,..,T) or the horizon
period T+l, respectively.
Furthermore, denote by sj a sequence j of situations over the

planning period such that

o) - [s{’s%""s%+1]

with s{ €S, (t=1,..,T+1)




and let S be the set of all possible sequences.
For the moment, it is assumed that S includes only a finite small

number q of possible sequences and that these sequences and their proba-

bilities pJ (j=1,..,q) are known. The possible net cash flows in the
various periods and the possible horizon values are then determined by
(a) the value of the decision vectors X, (t=1l,..,T) and (b) the possible

realizations of situation sequences.

3.1 The probability constraints

Let us now consider the possible net cash flows in a single period t

for a specified value of the decision vector X, (i=l,..,t). Denote them by
»

. (j=1,..q) and regard them as the possible realizations of a random

variable n e Furthermore, denote by E(ntx) the net cash flow in period t
of an "expected situation sequence" representing the expected velues E(gti).

E(Dt) and E(Ci) of g

ti’ Dt and Ci with i‘_‘l,oo,To
Define
-j E(ntx) o nix A nix ﬁ-E(ntx)
ktx = j=l,..,q (6a)
0 otherwise
2 nl - E@) it ol > En,)
Fex & 3=1,..,q (6b)
0 otherwise

Let us assume that the functional form of the probability distri-

bution of n_ is known and that the fractiles of this distribution are

8)

completely determined by its mean and variance. Let F(u) denote the

cumulative distribution function of the standardized variable

u = (ntx-E(ntx)/V V(ntx) . Define u_ . by the relationship F(uat)'“

t




A

Then the deterministic equivalent form of the probability constraint in
9)

period t for a specified decision vector can be formulated as

E(ntx) - V(ntx) _>_-t>t (7)

However, if the functional form of the probability distribution
of N is not known, Tchebychev's inequality (or the extension of
Camp-Meidel if n  can be regarded as unimodal, see Duncan [11]) still
yields an upper bound for Uie .10) This bound is a very conservative
measure. However, it will be shown that the model calculations yield
some information about the functional form of the probability distribu-
tion of the net cash flow associated with the optimal decision vector.
This information might be used (a) to adjust the assumption about the
functional form or (b) to calculate the "true" a s i.e. the a which
refers to the used Yot and the updated information about the functional
form of the net cash flow's probability distribution.

Whatever the probability distribution of n happens to be, as its

expected value E(ntx) has been restricted to zero in (5), (7) can be

rewritten as

q
L R +§,2
Yo jil Pk + R2)) 2b, or

q
3 ;=342 +j.2 2
121 i) + 3)) £ (b, /u ) (8)

(8) defines a convex upper bound for the absolute deviation of the

A

possible ntx

(j=1,..q) from E(ntx)' It restricts the set of feasible

values of the decision vector Xy (i=1,..,t) in order to satisfy the

probability constraints in (5).




As the .1lue of the decision vector is not known explicitly, the
values of the k;i (j=1,..,q) and kti (j=1,..,q) in (8) are not either.
However, they can be determined simultaneously with the determination of
an optimal decision vector by introducing variables k;j (j=1,,.,9) and

k:J (j=1,..,q) with the possible realizations

kK Kk \/ x; € X (d=l,,.,t)

t tx

)
p S =
Sl V %, €5 eL,..,%)

into the programming model (5). The deterministic equivalent form of the
probability constraint in period t for an unspecified decision vector can

then be formulated as

I .0

Y een=1x2 45,2 2
¥ (k3 % G 3 IS (hofe ) (10)

3

From an economic point of view, these variables could be regarded
as single period borrowing and lending opportunities for unexpected cash
flows in period t. In this case, borrowing rates r; and lending rates rt
might apply such that the borrowing or lending of a cash unit in period t
would affect the net cash flow in period t+l by R;=(l+r;) or R:=(1+rt),
respectively. While we will follow this interpretation when formulating
the deterministic equivalent form of the chance-constrained programming
problem, the variables could be considered alternatively as representing
penalties involved if the constraints (5b) do happen to be violated.
However, in this case the penalties might have to be paid in period t

rather than in period t+1, i.e.,the model formulation would have to be

changed accordingly.
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3.2 Objective function |

A similar procedure can be used to reduce the objective function

of (5) to a more tractable form. Let us define a random variable L by
the relationship

T

Y T e (1)
Cc.X o= cC.X
1 gt i=1 51

w =
X

N o3

i

*
where X, (i=1,..,T) represents a specified value of the decision g 1
vector x; (i=1,..,T). From (11) it follows that v has an expected value

E(wx)=0 and a variance

|

V() = V(I e xy) (12) |
i=1 -

Now, let us denote the possible realizations of v by

T

E g . yX 1> if : S < E( g *) ]
CEGa) = & oy e R IR |
-3 i=1 i=1 i=1 :
3 Wx = j=19 »q
0 otherwise
(13)
2 eyXy - E( 2 cixi) if oyxy (. c Xy
+j i=1 i=1 i=1 o
Wx = j_lv «5q
0 otherwise

where j marks the relevant situation sequence sj (j=1,..,q9). Then we get

§ . 3
V) = zlpJ«wa)z + (]
j=

)2) (14)

By proceeding as described above for the determination of the variance
of a periodic net cash flow we introduce variables w.j (j=1,..,q) and

w+j (j=1,..,q) with the possible realizations

|
i
i




N 17 [
w°j s w;j V X, € X (i=1,..,T)
(15)
=5 +j o
w Vo \{ X, € X (i=1,..,T)

into the programming model. Let

T

y2 = V(w—j+w+j) and v =E( I c.x
=1 s I

Then we can replace the objective function of the chance-constrained

programming formulation by the equivalent

maximize z' =v —Py
T
subject to E( Z ¢.x,) - v =20 (16)
f i%i
i=1
- +j, 2 2
> pj((w 3y 2e@wthy? - y <0
j=1
where the quadratic constraint defines a convex bound for the set of

|
feasible solutions of the decision problem. {

3.3 Model

o +3 -
The incorporation of the variables ktj, ktJ, w

1 and w+J with

t=1,..,T and j=1,..,q into the programming model requires the explicit
consideration of each possible situation in period t (t=1,..,T) and the
"horizon period" T+l, i.e. the consideration of all q situation sequences 1
over the planning period. (This procedure is similar to the one used in
stochastic programming with simple recourse [38]).

The deterministic equivalent form of the chance-constrained pro-

gramming problem can then be formulated mathematically as:




subject to

t

z E(gti)xi +

i=1 3

E
Ig

X,
i=1 (5 G ¢

1 T
' b
i=1

T
z
i=1

Ix

‘™

- 12 = !
Maximize z' = v - gy
E(gy,)x%, = -E(D,)
-3 +
8%1"1 % M -pJ (3=1,..,q)
3 ~§:2, ,.+§.2 2
2 el a3l ()< b, /u )
go1 1 T L™ |
q - —
fl(-pJRt-lktil+ij:;1k:il) = ~E(Dt) (t=2,..,T)
—~ -3 ) -3 +j 2 j :
Bttt By £ R, G by (gzi,--,g;

$ e
t @ ah il ahD < o ? (e,

j=1

q - —
E(c)x, + j:l(-ijTij+ij;k;j) i n

© R e -y e

q ?
£ (o wd)pd o1y

j=1

W+j

2

' i yz,_

@(3=1,.

(i=1,..

(i=1,..

=2,
t=1,..

+»q)

»T)

»T)

»q5
»T)

v

17)
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As the nonlinear constraints in (17) are all based on quadrat*tic
separable functions, they can easily be approximated by a grid lineari-
zation. In this case, efficient (integer or noninteger) linear pro-
gramming algorithms can be used to solve the problem.

It is easy to show that the deterministic equivalent form of the
chance-constrained programming problem can be adapted to more complex
situations, i.e.,situations where the decision maker's opportunity set
for dealing with an unexpected periodic surplus or deficit consists of
several distinguished single-period or multi-period borrowing and
lending opportunities. Furthermore, a technically similar formulation
would allow the consideration of penalties that have to be paid if a
deficit in a period t exceeds specified amounts or if the probability
constraints do happen to be violated.

As an example, consider a situation where several distinguished
single-period borrowing and lending opportunities are available. Denote

+]

by Y;J and Yt vectors that represent the borrowing and lending opportu-

nities in a period t within the situation sequence j. Assume borrowing
and lending rates to be represented by vectors R; and R: . Furthermore,
assume that the capital market conditions for these opportunities can
be expressed in a (integer or noninteger) linear programming format re-

3.9

presented by the formulation y; ,y: g A .

Then the constraints in (17) that refer to a period t=2,..,T

could be replaced by the following formulation:




- Ak &
t q
3 ! P 0 M
I E(g )x + T (-p'R__.Y. . 4+p'R, .y I} = -E(D, )
: {wl ti j=1 t-1"t-1 t-1"'t-1 t
t
T +j -3 L) S
iilgti i Beci¥ey * t S ke D:ti:
(ij=1,..,q)
7 @) Tah il e < o, )
j=1
=1 +j =1 +j
+ v -y -k + -k =0
t t t t (j=1,-o9Q)

P - Y;jaY:j e A
=21, ..,9)

4.2 Consideration of a variable cash reserve

The bt (t=1,..,T) in the constraints (5c¢) can be regarded as
restrictions on the amount of cash that is easily available from exter-
F nal sources for the compensation of '"unexpected" deficits in the perio-

dic net cash flows, i.e., their negative deviation from the expected

values. The formulation (5) does not allow the consideration of inter-
nal resources for this purpose. This is due to the assumption usually
made in chance-constrained programming approaches for capital budgeting
problems (see ,for example,Naslund [25]) that the decision variables
represent '"contracts' that cannot be changed during a period for com-
pensating unexpected deficits.

However, the possibility of determining an optimal periodic

cash reserve from internal resources can be incorporated intc the

programming formulations (5) and (17).

(18)
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Let us assume that external and internal resources are available
for compensating unexpected deficits in a period t. Denote by ;t a deci-
sion variable that represents the amount reserved from internal resources.

Then (5b) and (5¢) in (5) can be replaced by

t
E( Z g ;%) -y, = E(-D)) (t=1,..,T)
i=1
t —
Prob {( I gtixi+Dt) :_-(bt+yt)}_iat (t=1,..,T) (19)
i=1

Y 0 (t=1,..,T)
For reducing the probability constraints in (19) to a deterministic
*
equivalent form we define variables Ye by the relationship
* =
y, =b_+v¥ (t=1,..,T) (20)

t t t

and proceed as described in the preceding sections. We then get

N A
u, I Glaghiathd- oo (een,.m
e @D
Vo - ¥, 2-b, (t=1,..,T)

The quadratic constraints that define convex bounds on the set of
feasible solutions of the problem are based on quadratic separable func-
tions, i.e.,their introduction into the programming model (17) would not
affect the possibility of its approximation by a linear programming

formulation.
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5. Random sampling of situation sequences

Suppose now that the number q of possible situation sequences is
large and that it is not feasible or economical to consider all sequences
explicitly in the model formulation. In this case, the decision of the
decision maker might be based on a random sample of sequences.

Assuming that the future probability distributions of the random

variables and their interdependences are known, a random sample of situa-
tion sequences could be generated by a simulation process. However, the
available data about future events is often restricted to a number of
| sequences usually derived from the past, i.e.,from time series,etc. Then
this set of sequences is usually regarded to represent a random sample.
However a random sample of situation sequences happens to have
been formulated, its use affects the formulation of the probability con-
straints of the problem. If the probability distributions of the periodic

net cash flows (or the horizon value) can be regarded as normal or appro-

ximately normal, the necessary changes in the formulation of the deter-
ministic equivalent forms of the probability constraints can be calculated |
in a straightforward manner.

Let us consider a probability constraint in the form (7) and

neglect for simplification the indices x and t such that

E(n) - u, v V(n) > -b (22)

From the sample mean m and the sample variance 32 we may compute
(ﬁ-uus) as an estimate of (E(n)-uu/ V(n) ). In repeated sampling from a
stable distribution this estimate will be approximately normally distri-

buted (see Hald [12]) about (E(n)-uul V(n)) so that we cannot be sure




S

that (a—uas) as computed from a single sample will be larger or equal
(-b) even if E(n)-ua/”V?E) > -b . To be "reasonably" sure, i.e.,with a
specified probability p, that the probability constraints will hold, the
multiplication factor u, in (E—uas) has to be replaced by a factor ug

such that

Prob {(E—uBs) 3_(E(n)-ua¢ V(n)} > p (23)

It has been shown elsewhere (see Hald [12]) that the normal distri-
bution that approximates the probability distribution of A=(ﬁ-ues) has
mean M(l)=(E(n)—uB/—V?E)) and variance

2

u
£

V) = V() (1 - 52 (24)

where d denotes the sample size and f=(d-1) the degree of freedom. Now,
let F(u) denote the cumulative distribution function of the standardized
variable u=(A-M()\))/Y V(A)). Define u, by the relationship F(up)=p "
Then by proceeding in the usual way, the probability expression (23) can
be replaced by

M(X)-up/FV?X),Z (E(n)-uufrvzﬁ) (25)

/1 u
or e e e e ™ (26)

As up, U, d and f are assumed to be known, “8 can be calculated from (26).

HJ1.ra

If the functional form of the probability distributions of the net
cash flows n, (t=1,..,T) are not normal, the sampling distributions of
means and variances will not be the same as if they were normal, but the

computations will not be very seriously affected unless the departure from

normality is very marked and the samples are small (see Duncan [11]).
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If the functional form is not known or we are unwilling to make
assumptions regarding it, then it is still possible to derive the mean
and variance of k=(ﬁ—uBs) from the sample (see Duncan [11]). But no
information is available about the functional form of the probability
distribution of A because no assumptions can be made about the functio-
nal form of the distribution of s. In this case one might apply Tcheby-

chev's inequality to get some rough limits on the probability variation.

6. Conclusion

In the preceding sections we were considering a capital budgeting
problem with continuous and/or integer decision variables where some or
all elements of the data were statistically dependent or independent ran-
dom variables. It was formulated as a chance-constrained programming
problem that allowed the explicit consideration of
a) decision opportunities dealing with a deficit or surplus in periodic
net cash flows such as the accumulation of an optimal cash reserve
or appropriate borrowing and lending opportunities and of

b) penalties that have to be paid if periodic deficits do occur or the
probability constraints do happen to be violated.

It could be shown that the chance-constrained programming problem
can be approximated by an ordinary (integer or noninteger) linear pro-
gramming problem. The proposed procedure is based on the explicit consi-
deration of possible realizations of the random variables in the program-
ming formulation as discussed in linear programming under uncertainty for
stochastic programs with simple recourse. The resulting increase in the

size of the programming formulation could be limited by basing the pro-

o Do N i A R

b i 1 A

Prea

e i A N
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cedure only on those possible realizations of the random variables that
were connected with a random sample of situation sequences, i.e.,of
possible subsequent periodic realizations of the random variables over

the planning period.
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Footnotes

1. For a survey see Naslund [25], Vajda [36] or Kall [18].
2. See Sengupta [29] for a comprehensive discussion.
3. See also Charnes and Cooper [ 6].

4. See Charnes, Cooper and Miller [ 9] for the original presentation of
a horizon value objective function and Weingartner [37] for a compa-
rative discussion of models using the horizon value or the present

value of a firm in their objective function, respectively.
5. See Weingartner [37] for some specific formulationms.

6. Note that the constraints (1lb) are formulated as equalities. This is
due to the assumption that the set of bending and borrowing oppo:stu-
nities in each period t includes all available alternatives for

cash use.

7. See Markowitz [21] for the original presentation though in the context

of a portfolio investment problem.

8. See Hillier [15] for a discussion of relations between the probability
distribution of the random variables gti (i=1,..,t) and Dt and the
probability distribution of their linear combination n . and the con-
ditions under which the probability distribution of n . can be regar-

ded as normal or at least (by some version of the Central Limit

Theorem) approximately normal.
9. See Hillier and Lieberman [16].

10. See Hillier [14].
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